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Multidisciplinary Design Optimization (MDO)

Systematic approaches to the design of complex,
coupled systems

“Multidisciplinary” — different aspects of the design
oroblem

~or now: MDO is the subset of the total design
oroblem that can be expressed as an NLP

MDO Iinvolves many areas

— Design-oriented analysis

— Design problem synthesis and solution
— Computational infrastructure
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A component of MDO: problem synthesis

« MDO problem formulation

— Relatively recent (e.g., Cramer et al., 1992) area
that deals with stating the MDO problem as an

NLP
* Analytical features of MDO problem
formulation strongly influence the practical

ability of optimization algorithms to solve the
MDO problem reliably and efficiently
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Canonical problem synthesis: Fully Integrated Formulation (FIO)

Problem: design for objective f with
S
|

 Laborious, expensive, one-time
process

* Inflexible

e Assumes that MDA is done via
fixed-point iteration

* Need to develop Multidisciplinary
Analysis (MDA) based derivatives

e EXpensive to maintain MDA far

Multidisciplinary Analysis from solution

e Disciplinary autonomy minimal

» Drawbacks of FIO motivate other

(fixed-point procedure) formulations

a;

i=1,...,N
and constraints

sensitivities
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Would like to have...

A formulation that Is easy to implement

Maximum disciplinary autonomy

— Letting disciplinary experts design virtually
iIndependently (e.g., optimize with respect
to local variables and local objectives and
constraints in disciplinary subproblems)

Efficiency In function evaluations
Good convergence properties
Flexible re-formulation and hybrids
Etc.
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Some observations...

Many alternatives to FIO are based on ad hoc
approaches

Anecdotal evidence indicates that some
methods work dramatically better than others

Much “fine-tuning” goes into solution

Limited computational evidence of relative
performance properties

Virtually impossible to replicate results
Now a more systematic analysis in progress
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Example: HPCCP/HSCT formulation study
Alexandrov and Kodiyalam, AIAA-98-4884

Evaluated three formulations with respect to several performance metrics:

Basic formulation

System Optimization

ER——— ——p minimize objective
sbjective s.t. design constraints design variables
constraints
E |_ Interdisciplinary <J
s Y coupling E .
Analysis, ™ *_Analysm " *
s udisciplinany Analyslt(MORY oo
Not equivalent to basic formulation
System Optimization
Equivalent to basic formulation minimize objective : !
st interdisciplinary consistency constraints
System Optimization
minimize objective 4
s.t. design constraints ¥ ¥
interdisciplinary consistency constraints S ubsystem Optimization S ubsystem Optimization
+ minimize inconsistency | ___ | minimize inconsistency
+ + 5.t disc. constraints s k. disc. consiraints
Analysis, | ... |Analysis, ‘\4 1
Analysis, Analysis ,
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Evaluating a formulation

Amenable to solution?

Robust?

— Relationship of the solution set to that of the canonical problem
— Optimality conditions
— Sensitivity to perturbations

Efficient?

Autonomy of implementation / ease of

transformation?

— The most labor-intensive part
— Important because no single formulation is good for all problems

Autonomy of execution?

— Wish to follow organizational structure for design
— Wish to optimize wrt local variables only in disciplines

Direct influence on solubility and software
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Example, continued

o Contributing formulations
— Basic formulation (FIO)
— Equivalent (Distributed Analysis Optimization, DAO)

— Non-equivalent (Collaborative Optimization, CO)

« Dramatic differences in performance

Problem 1 2 3 4 5 6 7 8 9 10
Method
FIO 610 220 610 81 3234 5024 8730 245 1574 1353
CO 15626 19872 1785 2102 837 40125 | 691058
DAO 9530 8976 382 544 932
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The remainder of the discussion i based on the follow ing publications:
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2. Alemandvow, M. M.: Multilevel Methods for Optimal Design, Encwlopedia af
Ootimizatnion, Floudas, C. AL and Pardalos P. M., Eds., pp. 328-537, Kluwer
Academic Publishers, 2001,

3. Alemandvow, M. M., Lewis, R M.: Algonithmic Peispectives on Problem
Formulations in MD O, ALTAA paper 2000-4719, September 2000.

4. Alemandrow, M. M., Lewis, . M.: Analytical and Camputational Properties of
Dhstributed Approaches to MDD, ATA A 2000-471 8, September 2000.

5. Alemandvow, M. M., Lewis, . M. : Analytical and Camputational Aspects of
Callabarative Optimization, MASA/TWM-2000-210104, Apnl 2000,

6. Alemandvowv, M. M.; Lewis B. M.: Comparative Properties of Collabarative
Ciptimization and Cther Approaches to MDO, Engineering Design O ptimizarion,
V.V, Toropov Ed., MCDE Press, 1999,

7. Alemandrow, M. M.: Optimization Algorithms in MD O in Mulsndisciplinary
Design Optimization: State of the Arr, Alexandrov M. M. and Hussaini, M. .,
pp. 79-89, SLAM Publications, Philadel phia, PA, February 1997,
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Two-discipline model problem and some formulations
S, I Disciplinary analysis A,
» | e.g., aerodynamic analysis
of flow around a wing ><
S, I, Disciplinary analysis A,
»| e.g., structural analysis

of a wing

Multidisciplinary analysis (MDA) expresses the physical requirement that a
solution must satisfy both analyses: given (s, I, l,), solve the system

a, =A; (s, |, a)
a,=A, (s, |, a,)

MDA defines a, and a, implicitly as functions of (s, I, ,):

a, = ay(s, Iy, 1)
a, = ay(s, Iy, 1)
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Collaborative Optimization (CO)

Alexandrov and Lewis, Analytical and computational
properties of collaborative optimization, AIAA Journal,
Feb. 2002, ICASE report (+ related papers)

CO-like methods have been re-invented or re-discovered
every few years for the last 20 years or so; last version
due to Kroo et al.

CO attempts to state and solve MDO problems in a way
that preserves the autonomy of disciplinary computations

An intuitive and attractive approach that appears to mimic
the actual design process

Instructive because of the intrinsic computational
difficulties

A good example of the effect of autonomy on efficiency
and robustness
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CO (description)
System problem: minimize f(s,t ;, t,)
S, 1,1,
subject to C(s, t , t,) =

The system problem issues design targets (s, t,, t,) to disciplines.
In lower-level problems, the disciplines design to match targets:

In discipline i, given (s, t;, t;), compute T;(s,t;,t)) andT(st,,t) as
solution of the following problem:

minimize _[|| o,-sl|2 + [[a;(0,];,t) — t;l|?
ol

subject to g (g;.l;, a;(0;,l;,t)) < 0,
where a; is computed via the disciplinary analysis a; = A(a;,l;,t))
One form of consistency constraints is
Ci(s,ty,ty) = _[[10G7(s,ty,ty) — s||* + ||ai(di_(s’t1’t2)1|i_(s’t1’t2)1tj) —t]|°
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Illustration: World’s simplest problem

(e.g., a bar of fixed length and variable cross-section area under a longitudinal force)

minimize{s | 0 < s <1}
On reformulating as CO., system and subsystem problems become
minignize f(s)
subjectto c;(s) = 5 || s —o1(s) I?’=0
ca(s) =5l s —aa(s) I =0
min{% | o1 —s||> | &1 > 0} and min{% | o2 —s||? | o2 <1}

One readily checks that the subproblem solutions are
0 ifs<0 s ifs<1

o1(s) = o2(s) =
s ifs>0 1 ifs>1
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Example continued

Breakdown of the standard stationarity conditions in CO5

o Ve;(8) =s—oji(s)and at s, = a,Vei(8,) =0

e Stationarity conditions: there exist A; and A, such that

Vf(s*] -+ )\1V61(S*] + A2Ves (S*) =0

e But Vf(S*) + )i]_VC]_(S*] + ’\.‘EVCE(S*) = Vf(S*) =1

Computational difficulties occur near solutions. E.g.,
could start at a solution and not recognize it.
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Example continued:

Results of NPSOL with
Sy, = 0.001 and

S.=0

Iteration

S

Penalty

e 0 N & i R W W =S

p—
W o = @

14

1.000e-03
-9.99%0e-01
-9.847e-01
-8.282¢-01
-4.142e-01
-3.430e-01
-1.718e-01
-1.436¢-01
-7.251e-02
-6.076e-02
-3.203e-02
-2.717e-02
-1.727e-02
-1.442e-02
-1.414e-02

0.0e+00
4.2e+00
5.7e+00
7.4e+00
2.7e+01
59e+01
4.0e+02
8.2e+02
S4e+03
1.1e+04
6.5e+04
1.2e+05
S.1e+05
1.9e+06
4.7e+06
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Some properties of CO of algorithmic import

No need for MDA until solution

Local variables handled in disciplines

No hope for large bandwidth of coupling

System-level problem is more nonlinear than the original

Jacobian of the system-level constraints vanishes at every
feasible point of the system-level problem [J Lagrange

multipliers will not exist, in general for the system-level
problem

Difficulties occur at or near points of interest
(multidisciplinary feasible)

Attempts to relax the problem lead to unpredictable results

Difficulties due to reformulation even if the original problem
IS perfectly well behaved
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More observations

Other distributed optimization methods have been
proposed and all suffer from similar difficulties:
coupling must be resolved

Eliminating local variables via optimization problems
may cause difficulties

Conjecture: for broadly and/or strongly coupled MDO
problems, disciplinary autonomy of calculations is at
odds with computational robustness and efficiency

Perhaps, can sacrifice some measure of autonomy
for robustness and efficiency

Distribute computation via more conventional
optimization formulations and attendant algorithms
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Alternatives formulations

Start with a simultaneous analysis-and-
design formulation (SAND or AAO)

SAND is related to several other formulations
via constraint closure

Gradients for SAND, FIO, and DAO (including
In-between formulations) are related

Start with an algorithm for SAND and arrive at
algorithms for FIO and DAO via simple
modifications that involve closing specific sets
of constraints

n.alexandrov@larc.nasa.gov



Relationship among Optimization Problem Formulations

WriteMDA as a7y =
a, =
ti =
ta =

Aq (Sellatz)
AE(S-;JE&tl)
ai

az

Start with Simultaneous Analysis and Design (SAND) formulation:

minimize fSAND(Sa ﬂ*laﬂ*E)

syaq,az,ly oty ,iz

subject to gi(s,li,a1) >0
gz2(s,l2,a2) >0
a1 = Ai(s,l1,t2)
az = Az2(s,l2,t1)

t1 =
to =

ai

az
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Relationship among Optimization Problem Formulations (cont.)

e Eliminate subsets of variables from SAND by closing various subsets of
constraints = get other formulations:

— Distributed Analysis Optimization (DAO): Eliminate a,, a2z as independent
variables by closing the disciplinary analysis constraints at every iteration of

optimization

— Fully Integrated Optimization (FIO): In addition, eliminate ¢, t> as

independent variables by closing {1 = a1 and {2 = a-.

— Optimization by Linear Decomposition (OLD): Eliminate l,, 15, #,, 5 as

independent variables via optimization subproblems (MDA remains)

— Collaborative Optimization (CO): Eliminate l1, I> (but not £, , £2) via

optimization subproblems
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Autonomy / modularity in implementation

 Computational elements needed for
optimization (in particular, sensitivities) can
be implemented autonomously by disciplines

 All formulations require roughly the same
amount of work to implement

e Consider sensitivities...
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Example: Sensitivities in DAO vs FIO

Consider DAO:

minimize fpao(s,t1,t2) = f(s,a1(s,l1,l2,t3), az(s,1l1,12,11))

S?'El?'lﬂﬁtl?tﬂ

subjectto go(s,t1,t3) > 0
gi(s,l1,t1) > 0
gz2(s,1l2,t2) > 0

t, = ﬂ'l(sallalﬂat.ﬂ)

t2 ﬂﬂ(salﬂalﬂatl)a

where, given (s,1,,15,%,,%t2),a, and a, are found from

a; — Ay(s,ly,t2) = 0
as — Az(s,f,z,fl)

I
e
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Example: Sensitivities in DAO vs FIO, cont.

For the objective fpao(s,t1,t2), we need

af of af
0s’ 8t Ot

For the design constraints g (s,l1,%,) and g(s,12,t;) we need

dg1 9g1 9g1 sinidl dg2 0g; 09g2
ds’ dl,’ at, 8s’ By, Bty

For the consistency constraints t; — A;(s,l1,t2) = 0 and

to — Ag(S,Ig,tl) = 0 we need

0A, A, OA, - A, OA, OA,
ds  8ly Oty Os  Ol, Oty
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Example: Sensitivities in DAO vs FIO, cont.
Consider FIO:

miliin}ize f(s,ai(s,l1,13),az(s,11,13))

subject to  go(s,l1,a1(s,l1,12),a2(s,11,12)) > 0
91(3111131(3111312)) 2 0
92(3312132(331131’2)) 2 0,

where a; and a; are computed in MDA

a; = Al(salla ﬂ'ﬂ)

as = A2(33123 ﬂ'l)
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Example: Sensitivities in DAO vs FIO, cont.

In FIO approach, we need to compute the sensitivities of the objective

Frio(s,l1,l2) = f(s,a1(s,l1,12),a2(s,l1,12)).

By the chain rule,
Ofrio _ g+ of 0a, i of Oa-
Os Os da, 0Os daz 0s
dfrr1o _ oOf dai 4 oOf Oaz
ol4 da, 0l da, Ol4
Ofrio _ of 0a, n Jf Oas
Ol 5 da, Ols das Ols

We compute the derivatives of a; and a- by implicit differentiation of the
multidisciplinary analysis equations

a; — Al(ﬁallaﬂ'z) ==

ﬂ*E_AE(S&JE&ﬂ'l) ==
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This yields

9A, daq A4
I "~ dao Os _ Os ’
_94, I Oaz 0A>
da, Js Js
. 0A, Oa, 9A,
- 3!‘12 3.!1 S 311
BAE I 8!‘1—2 ’
o 0
3[11 3;1
and
8A1 3[]—1 D
I _ dao ol -
day Ol - Ol

to be solved for the sensitivities of a; and a2 wrt (s,11,12). (Referred to as the

“generalized sensitivity equations” by Sobieski, 1990)
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Autonomy of implementation

The same elements are needed for sensitivities in
SAND, DAQ, FIO

Can implement constituent elements with autonomy if
do not integrate MDA via fixed-point iteration early

The elements are integrated differently in FIO and DAO
Analogous results for CO and OLD

In principle, can re-arrange computational components
associated with one formulation and obtain components
for another

Re-arrangement may require substantial effort

For some formulations, the re-arrangement is
straightforward

May reformulate or use hybrid approaches (far vs. near
solution)
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EXﬂ[leE: DAO vs FIO vs SAND (analysis and coupling constraints only)

Simplified FIO formulation: minimize frro(x) = f(x,a1(x),az2(x)),

where, given x, we solve the MDA

Ai(z) \ _ [ a1 — Ai(z,a1(z),a2(z)) | _ 0
Az (x) az — Az (x,a1(z),a2(x))
Simplified SAND formulation:

minimize fSAND(:E, [11,[].2) = f(m, [11,[].2)
i, ,an

subject to A;(x,a1,az2) =0
jg(m,u1,ug) =0

Simplified DAO formulation:

minimize fDAD(iBe ai. ﬂg)
r,a1.az,t1,i2
subjectto t; — ai(x,t1,t2) =0
to — ﬂz(ﬂ.’:,t1,t2) =0
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Example: DAO vs FIO vs SAND, cont.

W; — basis of the null-space associated with the derivative of the block A;. Relying on
implicit differentiation and the derivations by Lewis, 1997, note the relationship among
the sensitivities for the three methods:

e Suppose, (x, a) is feasible with respect to MDA. Then the (projected) gradients at
(x, a) of FIO and SAND are related by

meFfo(iE) == W;AND (1139 ﬂ—)vm,afSAND (1139 ﬂ*)&

where Wgs A nvp denotes a particular basis for the null-space of VAT in the SAND
approach.

e Suppose that (x, a) is feasible with respect to MDA. Then

WEAG Ve,afDAO (11’:-; ﬂ—) — WgAND (113-; ﬂ—) Vaz,afsanp (1“-} ‘1)

Can use these relationships to implement a reduced-basis optimization algorithm for the
three formulations with minimal modifications.
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Sketch of a conceptual algorithm

Consider one step of a reduced-basis algorithm for the SAND formulation:

1. Construct a local model of the Lagrangian about the current design.

2. Take a substep to improve feasibility.
3. Subject to improved feasibility, take a substep to improve optimality.

4. Set the total step to the sum of the substeps, evaluate and update.

e MDA after step 4 —> a corresponding algorithm for FIO.
e Solving the disciplinary equations as in DAO =—=> an algorithm for DAO.

e Passing between algorithms for distinct formulations is a straightforward step.
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Our Currently Favorite Formulation: Expanded DAO

minimize fDAG (S.,. f:l ’ tg)
8,00,01,02:l1,l2,t1,t2
subject to go(oo,t1,1t2) > 0

91(0'195197&1) 2 0
92(529!29t2) 2 0
1 = ﬂ1(ﬂ'1,£1,t2)

'f:z = ﬂ.z(ﬂ'z, 32, t1)

0 = 8
o1 =— 8
T — 8

e Expand variable space to relax the requirement that the disciplinary design
constraints be satisfied with the system-level values of s

e Implementation autonomy, no MDA

e Single-level optimization problem - readily soluble
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MDO Problem Synthesis / Implementation
Problem: design for objective f with Some time later?

Now

d 1119

|
N

(fixed-point prccedure)

MDA

sensitivitics Expend the effort at the outset to implement analysis and
sensitivity modules; easy to transform and expand: an
opportunity for a general framework
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Concluding Remarks

Problem formulation is one of the deciding factors in
practical solubility of the problem

No single formulation is ideal for all problems

Disciplinary function and derivative modules can ease
Implementation and enable some degree of disciplinary
autonomy and dynamic re-configuration of the problem

However...

— There is a good reason for periodic reappearance of CO-like
methods: handling of local design variables in disciplines is desirable

— Unsolved problem: efficient, robust, method with full disciplinary
autonomy

Some other limiting factors in MDO and simulation-based
optimization:

— Extreme expense of function evaluations (addressed Wed.)

— Insufficiently developed models
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